
Tetrahedron Letters 51 (2010) 1022–1025
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate / tet let
‘Click’ chemistry as a tool for the facile synthesis of fullerene
glycoconjugate derivatives

Guilherme Rocha Pereira, Leandro José Santos, Inácio Luduvico, Rosemeire Brondi Alves,
Rossimiriam Pereira de Freitas *

Departamento de Quimica, Universidade Federal de Minas Gerais, Av.Antonio Carlos, 6627, Campus Pampulha, 31270901 Belo Horizonte, Minas Gerais, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 September 2009
Revised 4 December 2009
Accepted 9 December 2009
Available online 22 December 2009

Keywords:
Fullerene glycoconjugates
‘Click’ reaction
Bingel’s cyclopropanation
0040-4039/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.tetlet.2009.12.050

* Corresponding author. Tel.: +55 313409 5721; fax
E-mail address: rossi@netuno.lcc.ufmg.br (R.P. de
A bis-malonate C60 derivative bearing terminal alkyne groups prepared by the Bingel reaction has been
used as a building block under copper-catalyzed azide–alkyne cycloaddition conditions to produce a
series of new fullerene glycoconjugate derivatives.
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Almost twenty years have passed since fullerene C60 was made
accessible for researchers in large quantities by the Krätschmer-
Huffman method.1 The chemistry of C60 is a well established field
of research and the knowledge accumulated in the last two dec-
ades has revealed both potentials and limitations of this molecule
and its derivatives. Chemically modified fullerenes have found very
promising applications in two main fields: nanomaterial sciences2

and medicinal chemistry.3 For the latter, the potential of C60 can be
exemplified by the use of certain derivatives in DNA cleavage,4

enzymatic inhibition,5 and cytotoxicity by generating singlet
oxygen under light.6

For biological use, many different strategies have been explored
to render the fullerene C60 biocompatible.7 Covalent chemical
functionalization of fullerenes seems of fundamental importance
for this end and the design of fullerene derivatives containing a su-
gar on its surface is particularly interesting. It is known that sugar
moieties in biomolecules have important roles including cellular
transport and adhesion phenomena.8 It has yet been shown that
fullerene glycoconjugates have an activity similar to lectins and
participate in molecular recognition between cells.9 Based on
previous work, it is also reasonably clear that the sugar linkage
to C60 may bring about notable biological and physicochemical
properties.10

Since Vasella et al.11 reported the fullerene glycoconjugate deriv-
atives obtained through addition of glycosylidene carbenes, differ-
ent types of procedures have been employed to synthesize this
type of compound. Among the methods cited in the literature to pro-
ll rights reserved.
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duce fullerene-carbohydrates, cycloaddition reactions are the most
useful. Dondoni and Marra12 have synthesized a fulleropyrrolidine
glycoconjugate by a [3+2] cycloaddition with C-glycosyl azomethine
ylides. Mikata et al.13 reported a [3+2] cycloaddition reaction of 20-
azidoethyl per-O-acetyl-a-D-mannopyranoside to C60 furnishing a
fullerene glycoconjugate which produced singlet oxygen under laser
irradiation and exhibited photocytotoxicity. Based on the Diels–Al-
der reaction, Liu and co-workers14 prepared a fullerene bearing
b-cyclodextrin as an efficient photodriven DNA-cleavage reagent.
Recently, Tanimoto et al.15 have described the use of a fullerene gly-
coconjugate hybrid obtained by cycloaddition in the photodegrada-
tion of HIV-protease.

Considering the high potential of fullerene glycoconjugates, the
development of general methodologies to build these compounds
is necessary. A method rarely used to obtain fullerene-carbohy-
drates is Bingel’s cyclopropanation.16 This reaction, very useful in
the chemistry of fullerenes, has been used only once to obtain gly-
coconjugates. Enes et al. produced a fullerene glycoconjugate
mono-adduct with a good oxygen quantum yield.17 The authors
obtained the target fullerene by reaction between a sugar malonate
and C60 under Bingel conditions. Thus, most of the fullerene glyco-
conjugate derivatives have been prepared by the direct functional-
ization of C60 in the final step in low to moderate yields. Actually,
the use of fullerene building blocks in multi-step synthesis has
been very scarcely considered in the literature. This is mainly
due to the chemical reactivity of the fullerene, which reacts readily
with nucleophiles or unsaturated compounds. Therefore, the range
of reactions that can be used for the further transformations of ful-
lerene derivatives is quite limited. The ‘click’ chemistry appears to
be an attractive tool for fullerene chemistry as click reactions are
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tolerant to a wide range of functional groups, clean, and high yield-
ing. The most popular ‘click’ reaction, the copper-catalyzed azide-
alkyne cycloaddition (CuAAC) has been used recently to obtain
highly functionalized fullerene derivatives.18 However, most of
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One-pot synthesis of fullerene bis-adducts
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the methods described are specific and only one example is known
for the synthesis of fullerene glycoconjugates via a ‘click’
reaction.19

As part of our research program on fullerene derivatives, we
have evaluated the use of a stable fullerene bis-adduct building
block (1) bearing two terminal alkynes (Fig. 1) to produce fuller-
ene glycoconjugate derivatives under CuAAC conditions. To the
best of our knowledge, there are no examples in the literature
of bis-adduct fullerene glycoconjugates obtained through a com-
bination of Bingel’s cyclopropanation conditions and the ‘click’
reaction.

Fullerene derivative 1 was prepared as described in the litera-
ture.20 The preparation takes advantage of the regioselective
reaction with bis-malonate derivatives21 which leads to macrocy-
clic bis-adducts of C60 by a double Bingel cyclopropanation at the
C-sphere.
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Table 1 (continued)

Entry Azidosugar Bistriazole carbohydrate fullerene
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We have chosen a bis-adduct bearing two terminal alkyne
groups and not a mono-adduct to decrease the reactivity of the
C60 moiety toward the azide reagents20 and increase the solubility
of fullerene for the ‘click’ reaction. It is important to observe that in
the Bingel reaction for preparation of compound 1 we must use a
limited number of equivalents of iodine. An excess of iodine fre-
quently produces a mixture of side products which complicates
purification. The reaction of 1 with sugar azides 2a–f in the pres-
ence of CuSO4�5H2O and sodium ascorbate in CH2Cl2/H2O gave
the corresponding 1,2,3-triazole fullerene glycoconjugates with
yields of 80–98%.22 The organic azides were prepared using classi-
cal reactions of sugars.23 We have used sugars bearing different
protecting groups to show the generality of the method. The re-
sults are summarized in Table 1. The structures of all fullerene gly-
coconjugates were confirmed by 1H and 13C NMR, IR, and mass
spectrometry.24 Deprotection of the hydroxyl groups in fullerene
glycoconjugate 3a with trifluoroacetic acid25 afforded the corre-
sponding deprotected derivative in 78% yield.26 Under similar reac-
tion conditions, deprotection of the hydroxyl groups in compound
3b led to a solid insoluble both in water and in organic solvents.
The lack of solubility of that product prevented its structural
characterization.25

In conclusion, we have shown that the CuAAC reaction of azide-
containing sugars and alkyne-fullerene 1 is an interesting tool to
obtain fullerene glycoconjugate derivatives. Several methods are
cited in the literature to produce fullerene glycoconjugates. How-
ever, the use of the ‘click’ reaction combined with the Bingel reac-
tion to produce fullerene glycoconjugates is an innovative route.
Additionally, the use of the ‘click’ reaction as the last step to func-
tionalize the fullerene presents the advantage of higher global
yields when compared with a cycloaddition reaction or the Bingel
reaction using highly functionalized malonates. The approach is
very simple and general, and the introduction of other biomole-
cules (such as amino acids) and labels (for example biothin) can
also be easily made by this approach.
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